Fourth order pseudo maximum likelihood methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo maximum likelihood estimation for differential equations

We consider a set of deterministic differential equations describing the temporal evolution of some system of interest, and containing an unknown finite-dimensional parameter to infer. The observations of the solution of the set of differential equations are assumed to be stochastically disturbed by two sorts of uncertainties: the state variables of the system are measured with errors, and they...

متن کامل

Maximum pseudo likelihood estimation in network tomography

Network monitoring and diagnosis are key to improving network performance. The difficulties of performance monitoring lie in today’s fast growing Internet, accompanied by increasingly heterogeneous and unregulated structures. Moreover, these tasks become even harder since one cannot rely on the collaboration of individual routers and servers to directly measure network traffic. Even though the ...

متن کامل

Pseudo-maximum Likelihood Estimation of Arch(∞) Models

Strong consistency and asymptotic normality of the Gaussian pseudo-maximum likelihood estimate of the parameters in a wide class of ARCH(∞) processes are established. The conditions are shown to hold in case of exponential and hyperbolic decay in the ARCH weights, though in the latter case a faster decay rate is required for the central limit theorem than for the law of large numbers. Particula...

متن کامل

Comparison of Maximum Pseudo Likelihood and Maximum Likelihood Estimation of Exponential Family Random Graph Models

The statistical modeling of social network data is difficult due to the complex dependence structure of the tie variables. Statistical exponential families of distributions provide a flexible way to model such dependence. They enable the statistical characteristics of the network to be encapsulated within an exponential family random graph (ERG) model. For a long time, however, likelihood-based...

متن کامل

Improving Multispectral Image Classification by Using Maximum Pseudo-Likelihood Estimation and Higher-Order Markov Random Fields

In this paper we address the multispectral image contextual classification problem following a Maximum a Posteriori (MAP) approach. The classification model is based on a Bayesian paradigm, with the definition of a Gaussian Markov Random Field model (GMRF) for the observed data and a Potts model for the a priori knowledge. The MAP estimator is approximated by the Game Strategy Approach (GSA) al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2011

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2011.01.004